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Abstract

A simple model of a DC discharge is considered. Simplifying assumptions
allow the kinetic equations to be solved analytically. The resulting electric
field, ionization and excitation rates are compared with experiments and
numerical simulations of DC discharges.

1. Introduction

Although the cathode fall (CF) regions is the most funda-
mental region of a DC discharge there is still no theory that
describes it. Hydrodynamic theories use the first Townsend
coefficient, which is a function of E/N, where E is the elec-
tric field strength and N is the gas density, and they fail to
explain the distribution of excitation and ionization rates
that have maxima at the end of the cathode fall. There are
some numerical simulations of a discharge [1, 2], however a
simple physical model is desirable. We present a simple
kinetic model which, despite its simplicity, can describe
several important features of a DC discharge. We limit our
model to the case of a very high electric field at the cathode
(or low gas pressure) which was recently very carefully
investigated experimentally and numerically [1, 3, 4]. The
other case of a moderate electric field will be described in a
future publication.

We have to solve the system of kinetic equations for ions
and electrons. These equations are coupled through the
Poisson equation for electric field, and the fluid equations
for neutral species (ground state atoms, metastables, excited
atoms). We want to find the distribution functions of
charged particles and the resulting electric field. In most
cases the number of neutral atoms, which are in the ground
state, greatly exceeds their number in metastable and excited
states as well as the number of charge particles. Thus, one
can neglect the electron (ion) collisions with all species
except with atoms in the ground state. This means that we
can solve the Boltzmann equations for ions and electrons
independently and they only couple with the electric field
through the Poisson equation. Another simplification is that
in most of the cathode fall region the ion density greatly
exceeds the electron density (since n; ~ j/u; » n, ~ j./u.,
where n, ;, j..i» 4, ; are electron and ion densities, current
densities and drift velocities, respectively). Thus, we can
neglect the electron density in the Poisson equation. With
these approximations we can solve the Boltzmann equation
for ions and use the resulting distribution function to solve
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the Poisson equation for the electric field. We can then solve
the electron Boltzmann equation using this electric field.

2. Electric field

Consider a low pressure discharge (E/N > 1000Td for He,
No,,d > 1) with a noble gas between two parallel elec-
trodes. Choose x to be the coordinate along the electric
field, where x = 0 defines the cathode and x is negative
between the electrodes. One can easily find the ion distribu-
tion function by realizing that the most important col-
lisional process for ions is charge exchange with neutral
atoms. In this case the ion motion is nearly one dimension-
al. Typically, the electric field varies on a scale length much
larger than the mean free path for the charge exchange
process, and the ion distribution function is similar to that
given by Den Hartog et al. {1]:
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In the above, v,, v,, v, are the components of the ion veloc-
ity, M and e its mass and charge, N-the gas density and o,
is the charge exchange cross-section. (v} is the step func-
tion: n{v,) = 0 if v, <0, and n(v,) = 1 if v, > 0. We can now
find the ion drift velocity 4; = {t;.>, calculated with the dis-
tribution function (1):
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Since n; = j/u;, this may be substituted into the Poisson
equation. Neglecting n, compared to »; in the cathode
region we obtain [5]:
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where j is the total current and y is the secondary emission

coefficient: j; = j/(1 + y). We define ¢(x) to be the electric

potential and integrate this equation with boundary condi-

tions ¢(0) = —U and ¢(x) = 0 at the point x = —d where

E = 0. The solution is

E(x) = 3C)*d + x)*?, #lx) = —33CP*d + x)°3,
if d+x>0 (4a)

and

E(x)=0, ¢(x)=0, if d+x<0. (4b)
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Fig. 1. A comparison of measured and calculated electric fields in the
cathode fall region of the discharge.

In the above, 4 is the distance from the cathode to the point
where E = 0, and

C=on—d_ [FNMoy 5)
14y e

Expressions for E(x) and ¢(x) yield simple relations which
are easy to compare with the experiment [1]:
s U

‘=3E0r

E@0) = 3CU)*>. ()

It is also useful to define a characteristic length ! which can
be used in a linear approximation of the electric field:

E(0)

— — F3/2 = (3 3/5
= SE/ox | E*(0)/C = (3CU)*3/C. M

The theoretical curves E(x) given by eqs (4) and (7) for the
parameters given in the Den Hartog et al. experiment [1]
are compared with their experimentally measured values in
Fig. 1. It is seen that agreement is very good throughout
most of the CF and differs only in locating the end point of
the cathode fall region.

3. Electron distribution function

Now that we have an expression for the electric field we can
find the electron distribution function. First, we notice that
the electric field used in the experiments [1] was so high
that almost all electrons created in the CF region did not
attain their equilibrium drift velocity (this feature was most
prominent from the other experiments). We can write for the
x-component v, of the electron velocity v:

de
m, s eéE —mNo_ vv, — No; 1 &. @8)
dt v

Note that here we have chosen the positive direction of the
x-axis pointing toward the anode so that E, = —E(x) (x =0
again in the cathode). Here o, and 6,) are momentum trans-
fer, and total inelastic cross-sections, and I is the ionization
potential. In noble gases the difference between the ioniza-
tion and first excitation thresholds is small, and within the
spirit of our approximation we will consider them both to
be equal to I. An additional simplification is to treat these
cross-section as constants at the energies above the thresh-
old (see Fig. 2). We further assume that during an inelastic
collision the primary electron energy loss is equal to the ion-
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Fig. 2. Momentum transfer, ionization, excitation and total inelastic inte-
gral cross-sections used in this work. Continuous lines are the approx-
imations used for the actual cross-sections (dotted lines).

ization energy (I). Thus, the newly produced electrons
appear with zero kinetic energy. If the right side of the equa-
tion (8) is always positive, then electrons undergo only posi-
tive acceleration and do not reach stationary speed. This
happens to all particles with the energy ¢ if

_efh(’_x) > 20,4¢)e + o;(e)l, )

where ¢ = &(x) is the electron kinetic energy.

In order to see whether or not this inequality may be
satisfied along the trajectory, we can substitute into eq. (9)
the potential energy of electron V(x) = —e@(x) and use
£=V* — V, where ¢* is the potential at the point where
the electron was produced. For the simple linear approx-
imation (E = E, /I, where { = | — x is the distance between
the particle and zero-field point) we obtain the following
condition for the electric field,

E=EyJ/V/e =%./VU .

In Fig. 3 we plot the left and the right sides of the inequality
(9) as a function of the particle kinetic energy (¢). Different
curves of the left side correspond to the different points
where an electron was produced. It is seen that for the
parameters of most of the experiments provided by Lawler,
Den Hartog and coworkers, inequality (9) is satisfied. This
means that electrons produced far enough from the point
where E = 0 must form a beam, and we can expect that at
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Fig. 3. Parametric plot of eE/N contours and 20 (e} + o,{e)l as a func-
tion of the electron kinetic energy.
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high E/N the electron distribution function is broad in
energy and narrow in the angle variable.

Prior to the derivation of the distribution function we
point out some distinguishing features of electrons close to
the maximum energy. We recall that elastic collisions do not
change the particle energy. However, inelastic collisions
decrease the energy of the electron by the ionization poten-
tial — about 25eV. From this, we may conclude that there
will be no electrons in the energy range between ¢ ,, and
Emax — I. Thus, if we had a peak at ¢ = ¢_,,, which consist of
the particles produced at the cathode, then the next peak is
at the energy ¢, — I. Similarly, the particles from the
second peak cannot be in the interval (e, — I, eg0 — 2D).
This interval is totally determined by the particles from the
first peak where ¢ = ¢,,.. Only at energies lower than ¢,
— 21 (which is about 50eV lower than ¢_, ), the distributton
function is formed by more than one energy shell The
amplitude of the peak at ¢ = ¢,, depends on the coordinate
x in a manner given by exp (— | No, v dx/u,), where u, is the
drift velocity of electrons forming this group.

Before solving the kinetic equation for electrons we point
out that at low energies the elastic cross-section is isotropic,
and does not depend on the scattering angle. However at
higher energies, exceeding 20-30eV, strong forward scat-
tering is prominent [2, 6, 7]. Thus, we can expand the dis-
tribution function of high energy particles in the elastic
collision term near 8 = 0. After simple calculations we find
that instead of the usual elastic collision term St =

— O A fe — <.fe>} we have

Nve, 1 .
2 sinf 68 o0

Using this collision term we can write the Boltzmann equa-
tion for energetic electrons as foliows:

Stel =

11

g%z _N 0 eE e
cos 0 ox — 2sin 6 6 5 sin 0( sin 6f, + sam,(a)—)
+ Stil(fe)’ (12)

where the distribution function f, and ¢ = mv?/2 are con-
sidered as functions of coordinates 6, x and the total energy
& = ¢ + V. In the above, St is an inelastic collision term:

St(f)=N ( — o)) f ()

+% j.au(s’) f.(e, 6’ dv’ sin 8 de)

+ 8N r o (0N (o) do, (13)
V2Ifm)
g=cec+1, v=up)

The largest term in equation (12) is the one in the right side
of it, which contains differentiation over 6. Equating this
term to zero gives the angular distribution of the electron
distribution function in the lowest order approximation. We
find,

2¢E cos 0 eE _,
f,ocexp( No— )oc exp(—Nams()).

mt

(14

Since No,,&/eE <€ 1 the electron distribution function is
concentrated in a cone with the width about (A6)’ ~

No, ¢/eE < 1 near 6 = 0. Note, that at high energies* (more
than 50eV) o,(e) oc ¢~ This means that (A8)® ce™! or
(Av,)* = const < v}. Hence, the electron motion is practi-
cally one dimensional. The electron drift velocity is very
close to the total electron velocity and the ionization rate is
small.

In the case where No,,e/eE > | the distribution function
is almost isotropic and we can use the two spherical har-
monic expansion: f, =f, + f, cos §. In this case the drift
velocity is much smaller than the total velocity, and the par-
ticle spends more time at each position, which means that
the ionization rate is high.

It is easy to show (see Fig. 3) that if ¢E/N even slightly
exceeds the max [eo,(€)] at the cathode, then it exceeds it
almost up to the point where E = 0. This means that elec-
trons from the cathode form a beam which moves toward
the anode almost without losses up to the end of the
cathode fall, where the electric field is essentially zero. In the
region, where eE/N is less than &o,,(c) they begin to lose
their speed and, therefore, produce more tons.

Let us now find the energy distribution of electrons in the
high field region. Taking into account the one-dimensional
character of electron motion we obtain for the distribution
function f (&, 6 = 0; x) in the shell (£, & + d&):

afe

o = Noy(f. —f) + Rix)m, (e). (15)
Here R,(x) is the ionization term:

elU -V
R{x) = (N/m,) | f{eoie) de.

For the shell which has the maximum energy (& = eU),
£ = £, = eU — V) we immediately find
Jo(x) = folxo) exp [ —Noylx — x,)],
where x, = I/|eE(0)|. Since x, < (No;))~! we can neglect x,
in the exponent, and have
Joe— D)
1 + Y J20/m /1 — (Noy 1) eE(0) |
7 D)

~1+)’ ,/2I/m

Here we used the boundary condition at the cathode:
j.(0) = yj{0) and the condition for constant electron current
in this region, j, = /(1 + y) = const. For the second peak
(with the energy ¢,, — I) we can neglect the Ri(x) term
compared to the term Na;, f(€,.; X). Thus,

Jelemax (x — xo)No;, folx)
= (x — xp)No;; exp (— Nay(x — xo))fo(xo)-
(18)

(16)

Jofxo) =

(17

—ILx)=x

For the wide part of the distribution function which is
below ¢,,,, down about 50eV or more, we can expand the

* This can be shown by direct integration of the analytic expression [2] for
elastic cross-section ofe, §) = exp [ —ae'/ sin (9/2)] given as an approx-
imation to the experimental results [7]. There is, however, some discrep-
ancy between this result and the data given by Hayashi {8], where
Cmle) oc &7 312
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difference
9
C—fox T =5, 19
fenfom IS (19)
After substituting (19) to (15) and using x = {1 — /V/eU),
we find that f(&, x) must be a function of the combination

& — (/i) /V/eU:
f(&, x) = fe(é’.’ L L).

ia N eU

(20)

The value of this function for any particular value of the
argument can be determined at the point on the trajectory
where the particles were produced. Integrating eq. (15) over
the small distance Ax near the point, where the particle is
created (v =0) and using simple relations between 4-
functions: é(¢) = 8(& — V) = Hx — x*})/(eE*) we find

fle= +0;x) =f(&, x*)

_ R(x*)m,
== 1)

E*

The asterisk means that a function is evaluated at the point
e=0:x*=x(V = &), E* = E(x*) = E(V = &).

4, Ionization and excitation rates

For the parameters of the Den Hartog et al. experiments
[1): N~10"cm ™3, 6, ~ (3-5) - 1077 em?, ! ~ 0.3cm, we
have l/i; ~ 1. This means that particles in the tail do not
lose much of their energy in the CF region (A€ < I <€ &),
and as long as electric field is strong enough the particles do
not scatter. Each energetic particle produces the same
number of the new ones per unit length (1/4; = No) inde-
pendently of its own energy. The electron current j,, ioniza-
tion R; and excitation R,, rates depend on the coordinate x
as follows,

Jdx) =j(0) exp [(x — x0)/A;] = j(0) exp (x/7),

Jj0)
€

22)

R{(x) = No, j(¢ > I)/Je =~ No,j./e = Na; exp (x/4), (23)

R.(x) = No.. j{e > I)/e

~ No_, j./e = No,, ji?-) exp (x/4)-

(24
Indeed, let us divide current j(x) into two parts: j_(x) and
j+(x) produced by the particles with lower and higher
kinetic energies than I, respectively. For these currents we
can write

3j, €E .

Jdr _ = 25
x -1 (25)
dj- ) e

J- f, ——— . 26
o Na;j. 7/- (26)

Since ¢E » INo; we immediately obtain expression (22). If
we remember also that in the quasi one-dimensional case

Ri. ex = N J fe Uai. ex dt) = Nai, exj+/e’ (27)
1

and that j_ <j,, then we obtain (23) and (24). Having
found an expression for the ionization rate and general form
of solution (20), we can easily find the electron distribution
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function at any point x as a function of kinetic energy s.
Using (20) and (21), and neglecting the changes in the parti-
cle energy along its trajectory, we can write:

dx* R(x*) dx*
fie; ) =18, x*(x)] Exx_=%§

R(x) R(x*) E dx*

" eE Ryx) E* dx

14
=fe=0,x7 T2 &P (—Ax/4). (28)

In the above we used V* =V + ¢;

Ax = I(\/(e + V)/eU — \/V/eU). (29)

Note, that in the vicinity of the zero-field point condition (9)
is not satisfied. However, the particles which already gained
energy still move forward almost one-dimensionally, and
slowly increase the angular width of their distribution func-
tion.

At the end of CF (E = 0) the electron distribution func-
tionis [V = 0 in (28)]

const. 1 3
-5 (1)

(30)

Combining eqs (19) and (15) with the condition E = 0 we
obtain equation

af o
— INgy Fo

ox
which gives us characteristics ¢+ Ix/4;, = constant and
solution

0, : (1)

6 %) =f(e +1 1‘{-—’)

il

(32)

with boundary condition that at x = [ the functions (32) and
(30) are the same. The coordinate dependence of ionization
and excitation rates here are

v l e\ o,
R, HO:J‘ exp(_— —)Mde.
) I(1 + x/Ait) j'i eU &

Formulae (23), (24) and (33) qualitatively well describe the
distributions of excitation and ionization rates in a low
pressure discharge [1].

(33)

5. Conclusions

We have presented a simple kinetic model for a high electric
field, or low pressure DC discharge. Simplified, but realistic
assumptions lead to analytic expressions for the electric field,
the electron distribution function and ionization and excita-
tion rates. The calculated electric field was compared with
some experiments done by the Wisconsin group [1]. Rea-
sonable agreement was found. In addition, the analytic
expressions for the rates suitably describe the experiments.
The case for moderate electric fields is under study.
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