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In the theory of gas breakdown, an important role
is played by the effective secondary emission coefficient
(ESEC) γ : the number of electrons leaving the cathode
surface per one impinging ion [ 1 ]. Since long ago, it has
been known that at low E/p values (where E is the elec-
tric field and p is a gas pressure) the so defined γ depends
linearly on E/p , reaching a constant value only at high
E/p . The mechanism responsible for this dependence
was identified as a reflection of a part of the secondary
electrons from the gas atoms back to the cathode surface
[see Refs. 1 - 4 ] .

In the present communication, we point out a new im-
portant factor that can affect γ at high p : this is a
”roughness” of the cathode surface, with a scale a of the
humps and dips exceeding the electron mean free path.
Note, that at atmospheric pressure the new effect be-
comes important even for very fine surfaces, with the
size of the non-uniformities exceeding only 0.3− 0.4µm.
Qualitatively, the effect of the surface roughness can be
explained as follows. Electric field that has only a normal
component near the conducting surface, varies along the
surface, being stronger at the humps and weaker in the
dips. At a À λe , it is possible to divide the surface into
small elements which are almost planar and have a size
much larger than λe , with the electric field varying from
one element to another. Then, γ will also vary from one
element to another and, generally speaking, its average
value will differ from that of a flat surface.

Another important phenomenon that enhances this ef-
fect, is a non-uniform distribution of the ion current over
the surface. As the ion mean free path is usually even
smaller than the electron mean free path, the ion cur-
rent in the vicinity of the surface can be described by
the usual mobility formula ji = eniµiE , from which it is
clear that the distribution of the ion current will follow
the distribution of the electric field and the regions with
a larger local values of γ also have larger ion current den-
sities. Obviously, for ”rough” cathodes the value of the
ESEC should be obtained by some averaging procedure.
Let us consider a planar gap with the axis z directed
from the cathode toward the anode. We assume that the
roughness of the surface can be characterized by a single
parameter a , which stands both for the height of the non-
uniformities and the distance between them, as shown in
Figure. We limit ourselves to the early stages of the dis-
charges, when the charge density is small and the electric
field corresponds to the vacuum problem. In this case,
at z À a , electric field in the planar gap is uniform. We
denote its value by E∞ and the area it intercepts by S∞ .
At the cathode the electric field is non-uniform, causing
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corresponding nonuniformities of the ion current.
At a À λe , one can divide the cathode surface into

the small almost planar elements much larger than λe,
but still much smaller than a . Each of these elements
can be characterized by its own ESEC, γ = γ(En), which
depends on the electric field near the surface. Here En

is the normal component of the electric field on the sur-
face. Also the ion current density is proportional to En.
The averaged (over the surface area much larger than a2)
ESEC is, then equal to

γ̄ =
∫

γ(En)jindSn∫
jindSn

=
∫

γ (En) EndSn∫
EndSn

(1)

where the integrations are carried out over the cathode
surface and we used jin = eniµiEn.

One can introduce the distribution function P (En)
, defined as a fraction of the total flux of the electric
field intercepted by the cathode area (ΦE =

∫
EndSn =

E∞S∞), where the electric field strength lies in the range
(En, En + dEn) :

P (En) dEn = EndSn/(E∞S∞) (2)

Obviously for this definition,
∫

P (En)dEn = 1 and

γ̄ =
∫

γ(En)P (En)dEn (3)

If the probability distribution is known, then inserting
into (3) γ(En) for a perfectly flat surface, we find γ̄ .
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To find the probability distribution, one should solve the
Laplace equation for a given rough surface.

As an illustration we consider the model situation in
which the electric field can acquire only two values: En1

and En2 , with the probabilities P1 and P2 . As for the
γ(En), we shall use expression [ 2-4 ]

γ(En) = γiEn/(En + E0), (4)

where γi is the vacuum value of ESEC, and E0 ∼
W0/(eλe) . Here W0 is the kinetic energy of electron
just emitted from the surface. One can find a more cor-
rect expression for γ(En) in Ref. [ 4 ]. The normalization
conditions in this case are reduced to

P1 + P2 = 1 (5)

En1 > E∞ (humps), and En12 < E∞ (dips). If we intro-
duce the enhancement factor α = En1/E∞ , and specify
the value P1 , then from (3) and (5) we find:

γ̄ = γ (En1) P1 + γ (En2) (1− P1) (6)

For the surface, covered by separate hemispheres, the
enhancement reaches factor of 3 at the tips of the spheres.
For more prolate humps, α can be larger than 3. For a
numerical examples, we assume that all the electric flux
is intercepted by the areas of enhanced electric field, so
that En2 = 0 . In this case

γ̄ = γ (En1) = γi [αE∞/ (αE∞ + E0)] , (7)

ESEC on the linear part (E ¿ E0) is larger than ESEC
for the flat surface by a factor of α, being at the same

time small compared to γi . If E À E0 , then γ̄ = γi .
If a ¿ λe , then the non-uniformities of the electric field
vanish at the distances ∼ a from the surface, and the mo-
tion of the secondary electrons is virtually the same as for
a perfectly flat surface. In this case, there is no consider-
able effect of the surface roughness on ESEC: γ̄ remains
the same as for the perfectly flat surface. One can ob-
serve a similar effect, although not as strong, when a gas
does not contact directly the conducting electrodes, but
contacts the insulating coating of the electrodes. How-
ever, on these surfaces the electric field may also have
a tangential component Eτ . The electric field near the
surface and consequently γ(En, Eτ ) , in this case depend
not only on the shape of the conductor but also on the
dielectric constant of the coating, thickness and topogra-
phy of the insulator, etc. In some cases, with dielectrics,
the ESEC can be even less than that of a flat electrode,
while the roughness on a conductive surface always in-
creases its value making it closer to the vacuum value.
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