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In the theory of gas breakdown, an important role
is played by the effective secondary emission coefficient
(ESEC) γ : the number of electrons leaving the cathode
surface per one impinging ion [ 1 ]. Since long ago, it has
been known that at low E/p values (where E is the elec-
tric field and p is a gas pressure) the so defined γ depends
linearly on E/p , reaching a constant value only at high
E/p . The mechanism responsible for this dependence
was identified as a reflection of a part of the secondary
electrons from the gas atoms back to the cathode surface
[ 1-3 ] and based on J.J. Thomson’s simple consideration
L.B. Loeb proposed a qualitative expression describing
such a behavior [ 1,2 ]: γ = γi[4vd/(v̄0 + 4vd)], where γi

is the vacuum value of the secondary emission coefficient,
v̄0 is the average speed of electrons just emitted from the
cathode and vd is the electron drift velocity. In this re-
port we find an expression for ESEC based on a kinetic
approach. We limit our consideration to the case of a
high density gas or weak electric field. This condition
will be explained later. We also assume that the electron
mean free path λe is small compare to the scale-length
L of the problem, and electric field E is weak, so that
eEλe << W , where W is the electron kinetic energy.
In this case the electron distribution function (EDF) at
the distances from the electrodes exceeding a few λe is
almost isotropic and one can use for it a representation
f (~r,~v, t) = f0 (~r, v, t) + δf , where f0 (~r, v, t) and δf are
defined by the following equations [ 4 ]:
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where ν = Nσtrv is the electron collision frequency, σtr is
the electron-atom momentum transfer cross-section. The
electron density ne and electron current je are related to
f0 and δf , respectively:
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Let us consider a planar anode-cathode gap of a width
L and direct the z -axis along the normal to the cath-
ode. We treat the gas atoms just as resting scattering
centers, assuming that the inelastic processes turn on at
larger distances from the cathode. In this sense, our L
represents only a fraction of a real discharge gap. We
consider only one source of electrons - secondary elec-
tron emission from the cathode due to ions striking a

cathode, and identify the ESEC γ with the number of
electrons reaching the anode of the just defined system
per ion hitting the cathode.

Conductive cathode. An electric field may have
only component normal to the surface. In this case in
the stationary state EDF differs from zero only on the
sphere in the velocity space determined by the energy
conservation law, v2 = v2

0 + 2eEz/m . Accordingly,

f0 = F (z)δ(mv2 −mv2
0 − 2eEz). (4)

In case of a weak electric field the function F (z) and thus
γ can be found analytically and in the case eU À W0 ,
where U = EL it is

γ = γi
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We see that, for a given electric field, γ decreases with
the increase of the inter-electrode distance (eU ). This
shows that electron scattering at large distances from the
cathode (L À λe ) contributes to returning electrons to
the cathode and hence, to the inhibition of the ESEC γ.
In principle, the γ value for the discharge is determined
by the electron transport in the whole gap, not only near
the cathode.

If the energy dependence of ν is such that the integral
in (5) converges, then, in large enough gaps, γ reaches a
constant level, independent on L .

If the saturation is reached before the electrons acquire
the energy Wex sufficient for the excitation, then this γ∞
has a ”standard” meaning of the number of electrons
supplied by the cathode per impinging ion.

If, however, the saturation is reached at energies higher
than Wex , then γ itself becomes dependent on the ex-
citation processes and ceases to be a quantity pertaining
to the near-cathode region.

For a weak electric field, the second term in the de-
nominator of (5) is dominant, and we find
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where λe = 1/Nσtr(W0), and I(eU) is a dimensionless
factor defined by
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In a general case, the number of electrons entering the
zone of inelastic collisions depends also on Uex . Gener-
ally speaking, that by itself shows that processes in the
cathode zone are so tightly interwoven with the ones oc-
curring in the bulk of the discharge that one can’t use
a standard concept of the second Townsend coefficient.
Only a kinetic description of the discharge as a whole
allows one to find the electron current from the cathode.

Insulated cathode. In some cases, the surfaces ter-
minating the discharge gap, are covered with dielectric
materials. Near such surfaces the electric field may have
a tangential component as well as a normal one. What
is qualitatively new in this system, is that the electron
energy at a certain distance z from the cathode is not
uniquely defined by the initial electron energy at the
cathode. One can show that the velocity spread in some
point situated near the center of the gap is compara-
ble with the average electron energy. This circumstance
makes the problem much more difficult than the one
with conductive cathode. There are however some special
cases when the ESEC can be found analytically.

One of them is the case when the electric field is par-
allel to the wall of a planar gap. In this case equation
(1) allows an exact analytical solution. This situation is
possible when the walls are made of dielectric. The so-
lution is of some interest by itself (as it can describe the
situation with electron diffusion to the side walls of the
gas discharge) and as a benchmark solution for testing
the numerical codes.

The solution of Eq. (1) is particularly simple when the

electron mean-free path does not depend on its energy:

λe = v/ν = const. (8)

We place the source at the surface z = 0 and the sink at
the surface z = L . This simulates electron emission from
the side wall as a result of a photoeffect or a secondary
emission under the action of ions and excited particles.
Considering only a stationary solution we find,

γ = γi

[
4λe

3L
/

(
1 +

4λe

3L

)]
≈ 4λe

3L
γi. (9)

For typical conditions: γi ∼ 1 and λe/L ∼ 10−2−10−3

the γ in the considered case is very small and does not de-
pend on the magnitude of the electric field. This last and
unexpected result is a direct consequence of the assump-
tion that the electron mean free path λe does not depend
on the electron energy. Simple asymptotic expressions for
the high energy tail of the distribution function have also
been found.
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