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Abstract. The back-scattering of secondary electrons toward the cathode in a
high-density noble gas and the resulting effective secondary (electron) emission
coefficient, ESEC, is evaluated using a kinetic approach. The behaviour of the
ESEC in a mixture of noble gases is also discussed. The obtained results can be
applied to different sources of secondary electrons—ions, photons, etc. We provide
a comparison of obtained expressions with experiments.

1. Introduction

The phenomenon of secondary electron emission from a
surface under the action of a primary particle (photon, ion,
excited atom, etc) plays an important role in gas discharge
physics. This role is reflected in the theory by the effective
secondary emission coefficient (ESEC)γ : the number of
electrons leaving the cathode surface per impinging primary
particle [1, 2]. In a high-density gas theγ grows withE/p
at lowE/p values (whereE is the electric field andp is a
gas pressure), and reaches a constant value at highE/p

[3–6]. The mechanism responsible for this dependence
was identified as a reflection of a part of the secondary
electrons from the gas atoms back to the cathode surface
[1]. Based on J J Thomson’s simple hydrodynamic model,
Loeb proposed a qualitative expression describing such a
behaviour [1, 2]:γ = γi [4vd/(v̄0 + 4vd)], whereγi is the
vacuum value of the secondary emission coefficient,v̄0 is
the average speed of electrons just emitted from the cathode
andvd is the electron drift velocity.

Using a kinetic approach for electrons we have
considered analytically [7] the case when the voltage across
the gap does not exceed the excitation threshold of an atom
and found that electron scattering at large distances from
the cathode (L � λe) contributes to returning electrons to
the cathode and hence, to the inhibition of the ESEC,γ .
In principle, theγ value for the discharge is determined
by the electron transport in the whole gap, not only near
the cathode. The value ofγ is determined by the close
vicinity of the cathode surface only if the electron transport
cross-sectionσtr drops fast enough with the electron kinetic
energy.

In this report we consider another case, when
the voltage across the gap significantly exceeds the
excitation/ionization potential. As we did before [7], we
limit our consideration to a weakly ionized noble gas under

conditions when the electron mean free pathλe is small
compared to the scale-lengthL of the problem, and electric
field E is weak, so thateEλe � W , whereW is the
electron kinetic energy. We assume, though, that the
electric field is high enough so that one can neglect the
energy exchange between electrons and heavy particles in
elastic collisions. For simplicity we consider only the case
when the electric field is uniform and directed normally
to the surface (compare with [7, 8]). Since the value of
ESEC involves electron dynamics, it is natural to expect
that its value will be different in the stationary and non-
stationary cases. We will assume everywhere that the
electric field in the whole region, which determines ESEC,
is constant or changes much more slowly than the time of
establishing a quasi-equilibrium state in the same region
(later we will specify these conditions). In this sense we
will consider stationary or slowly changing electric fields.
Electron dynamics in a gas does not depend on the specific
source of secondary electrons (ions, photons, etc), and the
resulting expressions can be applied to any of these sources.
However, to be specific we will consider only one such
source—their liberation from the surface by the action of
ions.

According to a common situation in noble gases we
assume that the excitation and ionization thresholds are
higher than the energy of secondary electrons near the
surface [9]. Indeed, the cut-off of the energy spectrum
of secondary electrons is aboutWi − 2A, whereWi is
the ionization potential of the gas atoms andA is a
work-function of the surface (the maximum of the energy
distribution function is at about half of this value [9]).
Since the excitation thresholdWex of all noble gases is
only 4–5 eV lower thanWi , all or almost all of electrons
have energy belowWex when they leave the surface.

The paper is organized as follows. In section 2 we write
the basic equations describing the problem. In section 3 we
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analyse the case of the noble gases and find the ESEC for
them. Several analytic solutions of the kinetic equation,
which are presented in this section, are of some value
themselves as they can serve as benchmark solutions for
testing numerical codes. In section 4 we analyse the ESEC
for mixtures of noble gases, and, finally, in section 5 we
give a short summary of the obtained results.

2. Basic equations

Let us consider a planar anode–cathode gap of widthL and
direct thez-axis normally to the cathode, so that the electric
field is anti-parallel of the axis. Due to a symmetry of the
problem we conclude that the gradient of the distribution
function is also colinear with thez-axis. As was mentioned
in the introduction we consider herein the case of a high-
density gas or weak electric field, so that the electron
mean free path is small compared to the scale-length of
the problem, and the kinetic energy that electron gains
between two collisions is small compared to its kinetic
energy,eEλe � W . In this case the electron distribution
function (EDF) is almost isotropic at distances from the
electrodes exceeding a fewλe and one can use for it a
representation [10]

f (r,v, t) = f0(r, v, t)+ δf (δf � f0) (1)

where isotropicf0(r, v, t) and anisotropicδf parts satisfy
the following equations [10]:
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νtr
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and θ is the angle between the velocity vector and the
z-axis. Here νtr = Nσtrv is the electron collision
frequency, σtr is the electron–atom momentum transfer
cross-section,Cil(f0) is an inelastic collision term, and
C1
el(f0) is the part of the electron elastic collision term

describing the energy exchange between electrons and
neutral gas atoms. We shall discuss theCil(f0) andC1

el(f0)

later. The electron densityne and electron currentje are
related tof0 andδf , respectively:

ne = 4π
∫ ∞

0
v2f0 dv

je = −e
∫
vz δf d3v = 4πe

3

∫ ∞
0
v3g dv. (5)

It is convenient to choose new independent variables (z, ε)
instead of (z, v), where

ε = mv2/2− eEz (6)

is the electron energy, and we also choosez = 0 at the
cathode (we remind the reader that our analysis is limited

to a uniform electric field case). In the new variables (2)
and (4) take the following form:

∂f0(z, ε)

∂t
= 1

3v

∂

∂z

v3

νtr

∂

∂z
f0(z, ε)+ Cil(f0)+ C1

el(f0) (7)

g(ε, z) = v

νtr

∂f0(z, ε)

∂z
(8)

wherev is considered as the function of (z, ε) according
to (6). According to (6)ε > 0 at the cathode (z = 0), so
that ε > 0 is a necessary condition for electron to return
to the cathode, and for evaluating ESEC we need to know
the electron distribution functiononly in the energy range
ε > 0.

As we mentioned in the introduction, if the electric field
is not very small, then one can neglect the energy exchange
between electrons and neutral gas atoms (C1

el(f0) = 0).
Indeed, an electron gains kinetic energy in the electric
field with the rater+ ∼ eEvdr ∼ (eE)2/(mνtr ), where
vdr ∼ eE/(mνtr ) is electron drift velocity, and loses it (due
to elastic collisions) with the rater− ∼ (m/M)νtrW , where
W = mv2/2 is the electron kinetic energy, andM is a mass
of a background gas atom. One can neglect the energy
exchange in elastic collisions ifr+ � r−. Comparing
these rates we find thatr+ � r− in the whole range of
electron kinetic energies up to excitation energyWex , when
eEλtr �

√
m/MWex . Under this condition the electron

reaches the excitation threshold without losing its energy.
We assume here that the electric field satisfies this condition
and neglect theC1

el(f0) term in (7).
The inelastic collision termCil(f0) consists of two

parts: the scattering ‘out’ of an element (dr, dv) of a
phase space (‘sink’ term) and scattering ‘into’ the element
(dr, dv). As we mentioned in the introduction, the
excitation threshold,Wex , in noble gases is usually larger
than the maximum of the energy spectrum of emitted
electrons,Wmax . Thus, after only one inelastic collision
the electron leaves the initial energy range 0< ε < Wmax

(energy becomes negative and the electron leaves the region
within which it could return to the cathode), so that the
scattering ‘into’ term is absent in this energy range, and for
the inelastic collision termCil(f0) in this range of energies
we can write

Cil(f0) = −νil(v)f0. (9)

Here νil(v) = Nv(
∑

k σk(v) + σi(v)) is the energy
dependent frequency of inelastic collisions;σk(v) is an
excitation cross-section,σi(v) is the ionization cross-section
andN is the background gas density. It should be noted
that ε > 0 is a necessary condition for electrons to reach
the cathode, so that after one inelastic collision the electron
leaves the initial energy range and automatically leaves the
region within which it could still return to the cathode. The
absence of the scattering -‘in’ term allows one to consider
EDF and ‘differential ESEC’ (see later) independently for
every energy layer (W0,W0+ dW0).

Since Wmax < Wex , electron kinetic energy at the
surface,W0, is not sufficient to excite an atom, and inelastic
collision can occur only beyond certain distance from the
cathodezI (W0):

zI (W0) ≡ (Wex −W0)/eE (10)
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after the electron gains enough energy to excite an atom.
For the distances from the cathode closer thanzI (W0),
Cil(f0) = 0. Beyond this point,z > zI (W0), an electron
with total energyW0 can undergo inelastic collision. Using
the energy conservation law (6) for the electron before
it experiences an inelastic collision we can rewrite the
collision term (9) in terms of energy and coordinate,
νil(v) = νil(W) = νil(W0+ eEz).

We shall discuss the boundary conditions for (7) in the
next section.

3. Effective secondary emission coefficient for
noble gases

As we consider here secondary electron emission from the
cathode due to the action of ions striking the cathode, we
identify the ESECγ with the ratio of the electron and ion
currents near the cathode surface. Since we consider every
energy layer in the range 0< ε < Wmax independently, we
will first find the ‘differential’ ESEC as a function ofW0

and electric field. Then, integrating the differential ESEC
over the spectrum of emitted secondary electrons we shall
find the total ESEC as a function of electric field. The
width of the energy spectrum will serve as a parameter,
characterizing the surface–gas interaction.

The stationary solution of (7) (in the energy range
ε > 0) differs from zero only at the energy equal to the
initial energy of electrons,ε = W0. Accordingly, the
general stationary solution forf0 is

f0(z, ε) = F(z)δ(ε−W0) = F(z)δ(W − eEz −W0) (11)

whereF(z) satisfies the following equation:

1

3v

∂

∂z

v3

νtr

∂

∂z
F = νil(v)F. (12)

Substituting (11) into expressions (5), we find the electron
density and current constituted by electrons of the energy
W0:

ne = 2πFv je = 2πev3

3νtr

∂F

∂z
(13)

or

je = ev3

3νtr

∂

∂z

n

v
(14)

v is considered here as a function ofz given by (6) with
ε = W0.

Let us now formulate the boundary conditions for the
F(z). One of them is obvious:

F(z)→ 0 whenz→∞. (15)

This condition reflects the fact that sooner or later every
electron which has large enough kinetic energy experiences
an inelastic collision. Although the distance between
electrodes is finite, we can also use this boundary condition
if the voltage applied to the gap is much larger than the
excitation threshold.

Let us now formulate the boundary condition at the
cathode. The current to the cathode surface consists of
two terms: the current of the emitted electronsG(W0)γiji

and the current of electrons returning from the bulk of
the discharge volume. Here we introduced the differential
vacuum secondary emission coefficientG(W0)γi , where the
functionG(W0) shows what part of the emitted electrons
has the initial energy in the range (W0, W0 + dW0), and
satisfies the normalization condition∫ Wmax

0
G(W0) dW0 = 1. (16)

There is a temptation to present the current of electrons
returning back to the surface as constituted by the
‘hemisphere’ of the electron distributionf , near the
cathode. In our approximation (1) this would give
(remember that with our choice of the direction of the
electric field the current is negative)

encv0/4 (17)

where nc is the electron density in the vicinity of the
cathode (at a distance of a few mean free pathsλe),
and v0 =

√
2W0/m the electron speed near the cathode.

This expression, however, does not take into account
(i) scattering of these electrons back into the discharge
gap at distances smaller thanλe (i.e., a phenomenon that
would reduce the flux with respect to the expression (17))
or (ii) back-scattering of the just emitted electrons (i.e., a
phenomenon that would increase the flux to the cathode
with respect to (17)). The relative role of these two
phenomena depends on the peculiarities of the differential
scattering cross-section and on the angular distribution of
the emitted electrons. In other words, expression (17)
should in fact be multiplied by some unknown numerical
factor ζ of the order of unity (which can be found by
the numerical solution of the Boltzmann equation at the
distances∼ λe from the wall).

There exists a special case whenζ is just equal to
1. This is the case of isotropic distribution of emitted
electrons and weak electric field. Then the situation near
the cathode is only slightly (in the parametereEλe/W0

andλe/L) different from the case of the isotropic electron
distribution confined by the perfectly reflecting wall, i.e.,
the case when the distribution function is isotropic even
at z � λe. Accordingly, for an isotropic distribution of
secondary electrons and small electric fields, we have the
following boundary condition at the cathode:

je(W0) = G(W0)γiji + encv0/4. (18)

Hereje andnc should be expressed in terms of the function
F(z) using (13)–(14). In (18) we used the notationje(W0)

to remind the reader that this current is related to a specific
energyW0, while ji is the total ion current density. Note
that at small electric fields the two terms in the r.h.s. of
(18) almost exactly compensate each other so thatje �
G(W0)γiji .

We assume that the electric field (E/p) is not very
strong, so that after an electron reaches the excitation
threshold it does not gain much energy before it undergoes
an inelastic collision. In other words we assume that
|Wex ∂f0(W)/∂W |Wex

| � f0(Wex). In this case for the

214



ESEC in high-pressure noble gas

frequency of inelastic collisions above the threshold we can
use the simple approximation

νil(v) = ∂νil/∂W |W=Wex
(W −Wex)

≡ ν ′il(Wex)(W −Wex) W > Wex (19)

where the prime means the energy derivative. Below the
threshold, of course,

νil(v) = 0 W < Wex. (20)

Substituting (6) and (10) into (19) we obtain forνil(v) and
z ≥ zI
νil(v) = ν ′il(Wex)(W0+ eEz −Wex)

= ν ′il(Wex)(z − zI )eE(zI ). (21)

Saving only the main term in the left-hand side of (12) (the
one containing the second derivative ofF(z)) and using
(21) we finally obtain forF(z) in the regionz ≥ zI

∂2F

∂z2
= (z − zI )3νtrν ′il

v2
ex

eE(zI )F (22)

where we usev2
ex = 2Wex/m.

There are no inelastic collisions in the regionz ≤ zI
and (12) reads

∂

∂z

v3(z)

νtr (z)

∂

∂z
F = 0. (23)

Solving (22) and (23) with boundary conditions (15), (18)
and continuity conditions forF(z) and its derivative at
z = zI and using expressions (13) we find the following
expression forγ (W0, E) (see the appendix):

γ (W0, E) ≡ je

ji

= G(W0)γi

(
1+ 3

4

W0

Wex

(
σtr (Wex)

σ ′il(Wex)eEλtr

)1/3

+ 3

4v0

∫ zI

0

νtr (z) dz

(1+ eEz/W0)3/2

)−1

. (24)

This expression generalizes the results of [7]. In this
derivation we assumed that the distance between electrodes
L is much larger thanzI . To obtain the result for the
opposite case,L < zI , we can simply consider the anode as
a layer of completely absorbing particles (σ ′il [W(L)] →∞)
placed at the distanceL from the cathode. Then, we return
to the result of [7]:

γ = G(W0)γi

(
1+ 3

4v0

∫ L

0

νtr (z) dz

(1+ eEz/W0)3/2

)−1

. (25)

As in [7] from the integration overz in (24) we
switch to the integration over the electron kinetic energy
W , W = W0+ eEz.

γ = G(W0)γi

(
1+ 3

4

W0

Wex

(
σtr (Wex)

σ ′il(Wex)eEλtr

)1/3

+ 3N

4eE
W0

∫ Wex

W0

σtr (W) dW

W

)−1

. (26)

One can rewrite the last expression in a more elegant form:

γ (W0, X) = G(W0)γi
1

1+ wα(X̃/X)1/3+ ψ(w)X̃/X
(27)

Figure 1. Functions ψ(w) for all noble gases.

Table 1. Parameters determining differential effective
secondary emission coefficient.

X̃ ≡ Ẽ/p σil (W ) (10−18 cm2)
Gas (V Torr−1) α a b (σ ′il (Wex )(W −Wex ))

He 185 1.27 7.53 8.3 2.7(W − 20)
Ne 153 1.79 1.7 1.48 1.25(W − 16)
Ar 566 2.0 0.87 0.06 9(W − 11.5)
Kr 787 1.44 0.80 0.0 25(W − 11.3)
Xe 710 1.36 1.33 0.33 33(W − 10)

wherew = W0/Wex , andX is the reduced magnitude of
the electric field,

X ≡ E/p. (28)

Here we denoted the characteristic electric field reduced to
a pressure of 1 Torr as̃X:

X̃ = Wex

eλ̃tr (Wex)
≡ (Wex/e)σtr (Wex)× 3.53× 1016 (29)

and the electron mean free path (m.f.p.) at 1 Torr (N =
3.53× 1016 cm−3) as λ̃tr (Wex). The functionψ(w) and
coefficientα are

ψ(w) = 3

4
w

∫ 1

w

σtr (Wexy) dy

σtr (Wex)y

α = 3

4

(
σtr (Wex)

σ ′il(Wex)Wex

)1/3

. (30)

Plots of the functionψ(w) for noble gases are given in
figure 1. With a high accuracy it can be presented in the
form

ψ(w) ≈ aw(1− w)
1+ bw (31)

convenient for numerical simulations. The values ofX̃,
α, and coefficientsa, b for all noble gases, together with
approximations we use forσil(W) near the thresholds, are
given in table 1.

After integration of (27) overW0, we find the resulting
ESEC as a function of electric field.

γ (X) =
∫ Wmax

0
γ (W0, X)dW0. (32)
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Equations (26) (or (27)) and (32) represent the main result
of this paper.

For the quantitative example of utilizing expres-
sions (27) and (32) we consider two cases, which we name
(i) the He-like case, when the distribution of emitted elec-
trons is wide and most of them are emitted in the energy
range where the functionψ(w) also has a maximum and
changes very little over this energy range [9], and (ii) the
Xe-like case, when all emitted electrons are concentrated at
low energies, so that the maximum of their energy,Wmax ,
is less than the energy at which the functionψ(w) has its
maximum [9]. Each of these conditions can be met in any
gas, but the first case is more typical for He and Ne, while
the second case is usually met in Ar, Kr and Xe.

In the first case we substituteψ(w) by its average
value ψ̄(wmax) =

∫ Wmax/Wex

0 ψ(w)G(Wexw)Wex dw; in the
second case we substituteψ(w) by the linear function
ψ(w) = wψ̄ ′, whereψ̄ ′ ≡ ψ(wmax)/wmax is the average
value of the derivative in the interval 0–Wmax .

In both cases we assume that the functionG(W0) is
constant for the energies below the maximum energy,Wmax ,
and is zero above it. Using the normalization condition (16)
for G(W0) we find thatG(W0) = 1/Wmax , for W0 < Wmax .

(i) He-like case. ψ(w) = ψ̄(wmax). Integrating (27)
we obtain

γ̄ (X) = γi 1

αwmax

(
X

X̃

)1/3

ln

[(
1+ ψ̄(wmax) X̃

X

+αwmax
(
X̃

X

)1/3)/(
1+ ψ̄(wmax) X̃

X

)]
. (33)

For low electric fields one can neglect the unity compared
to other terms in the logarithmic term and we have

γ̄ (X) = γi

αwmax

(
X

X̃

)
ln

[
1+ αwmax

ψ̄

(
X

X̃

)2/3]
≈ γi 1

ψ̄

X

X̃

[
1− αwmax

2ψ̄

(
X

X̃

)2/3]
. (34)

(ii) Xe-like case. ψ(w) = wψ̄ ′. Integrating (27) from
0 to wmax we obtain

γ̄ (E/p) = γi

βwmax
ln(1+ βwmax) (35)

where

βwmax ≡ ψ(wmax) X̃
X
+ αwmax

(
X̃

X

)1/3

. (36)

For low field one can neglect the unity compared toβwmax
in the logarithm term and we have

γ̄ (E/p)/γi = (1/βwmax) lnβwmax

≈ (X/X̃)

ψ(wmax)
ln
ψ(wmax)

(X/X̃)
. (37)

For high field, βwmax � 1, expression (35) gives
γ̄ (X)/γi = 1− βwmax/2.

Figure 2. ESEC for 5 and 10 eV electrons ejected in He
and Ne.

Figure 3. ESEC for 0.3–2 eV electrons ejected in Ar, Kr
and Xe. The values of ESEC for Ar and Kr are virtually
indistinguishable.

Although the derivation of the ESEC is not valid in
the region of high electric field, the expressions (27), (33)
and (35) have qualitatively correct asymptotic behaviour,
so one can use them in all range of electric fields. The
plots ofγ̄ (E/p)/γi for different gases and different cathode
materials (any combination of gas–cathode material is
characterized by the values ofwmax) are presented in
figures 2 and 3.

4. Effective secondary emission coefficient for a
mixture of noble gases

In many applications the combination of a few noble gases,
typically two or three, rather than a single pure gas is used
as a working gas. In this case the ESEC defined as a ratio
of electron and ion currents at the cathode depends not only
on the electric field at the cathode and gas composition, but
also on the dynamics of the specific discharge. Indeed, by
definition

γ̄ = 1

j

∑
k

γ mixk jk =
∑
k

γ mixk

jk

j
(38)

where jk is a partial ion current related to a ‘k’ gas
component, andγ mixk is a partial ESEC for this current
component in the mixture. The partial ESECγ mixk depends
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only on the electric fieldE/p and gas composition, but the
ratios jk/j are determined by the discharge in the whole
gap and may even vary with time whenE/p stays constant.
Thus, it is more practical in this case to useγ mixk instead
of γ̄ .

In a general case of an arbitrary gas mixture the values
of γ mixk can be found only in numerical kinetic simulations,
such as direct Boltzmann or PIC-MC simulations. There
are, however, some cases when an expression forγ mixk

can be found analytically with relative ease. We consider
here two cases, both for two-component mixtures, which
are often used in practical applications. In the first case
the component with the lowest excitation threshold has
such a small partial pressure that one can neglect electron
collisions with its atoms. The ionization mechanism for
this component is mainly due to Penning ionization by
excited atoms of main component. In the second case the
partial pressure of the component with the lowest excitation
threshold is large enough that the electron distribution
function drops significantly in the region close to the
excitation threshold of this component. This kind of
mixture is often used in light emitting devices, like plasma
displays or in new xenon based lamps.

We assume that in both cases the spectrum of secondary
electrons related to the component with low excitation
threshold is narrow and the spectrum of secondary electrons
related to the component with high excitation threshold is
wide. This means that one ofγ mixk will behave as Xe-like,
the other as He-like. For convenience, in the following
description we will consider helium as a high-pressure
component and xenon as an admixture in both cases. One
can easily change notations He to Ne, and Xe to Ar or Kr
in final expressions.

In the first caseXe admixture does not affect electron
scattering, thusγ mixHe will be the same as in pure helium,
while γ mixXe will be determined by a narrow spectrum of
secondary electrons (related to the action of Xe ions) and
by electron scattering on He atoms. This means that one
can use expressions (35)–(37) forγ mixXe , but use functions
X̃He, ψHe(wmax) and αHe related to He and aswmax use
the ratio of maximum energy of emitted electrons (due to
the action of xenon ions),WXe

max , to the excitation energy
of He atoms (WHe

ex ): wmax = WXe
max/W

He
ex .

In the second casethe xenon pressure is high enough
so that beyond the xenon excitation threshold distribution
function drops fast and one can neglect inelastic processes
between electrons and helium atoms. The only process
that helium atoms contribute in this case (even at high
helium pressure) is elastic scattering of electrons. Thus,
this mixture can be represented as a modified Xe gas
densityNXe, with atomic elastic cross-sectionσtr = σXetr +
(NHe/NXe)σ

He
tr , and inelastic cross-sectionσil = σXeil .

Sometimes it is more convenient to consider this gas as
a surrogate gas densityN = NHe +NXe, and macroscopic
cross-sections6tr ≡ Nσtr = NXeσ

Xe
tr + NHeσHetr and

6il ≡ Nσil = NXeσXeil .

Now one can repeat a consideration similar to the one
made in the previous section and obtain an expression for

Figure 4. Partial ESECs in the gas mixture of 90%
He + 10% Xe and in pure Xe.

differential ESEC similar to (27)

γ mixXe,He(W0, Xmix) = GXe,He(W0)γ
Xe,He
i

×
[

1+ wαmix
(
X̃mix

Xmix

)1/3

+ ψmix(w)X̃mix
Xmix

]−1

(39)

where GXe,He(W0)γ
Xe,He
i are differential vacuum sec-

ondary emission coefficients for appropriate ions,w =
W0/WXe, Xmix = E/pXe,

X̃mix = X̃Xe + WXe

WHe

NHe

NXe
X̃He (40)

and αmix and ψmix(w) can be expressed in terms of
individual functions as

αmix = αXe
(

1+ σ
He
tr (WXe)NHe

σXetr (WXe)NXe

)1/3

≡ αXe
(
6mix
tr (WXe)

6Xe
tr (WXe)

)1/3

(41)

ψmix(w) = 6Xe
tr (WXe)

6mix
tr (WXe)

ψXe(w)+ 6He
tr (WHe)

6mix
tr (WXe)

WHe

WXe

×
[
ψHe

(
w
WXe

WHe

)
− wψHe

(
WXe

WHe

)]
. (42)

Here we introduced individual macroscopic transport cross-
sections for each component:

6Xe,He
tr = NXe,HeσXe,Hetr .

After integrating (39) over the spectrum of secondary
electrons for each gas component we obtain (33) and (34)
for γ mixHe and (35) and (36) forγ mixXe . For the illustration
in figure 4 we present plots of theγ mixXe and γ mixHe in the
mixture of 90% He and 10% Xe described by the formulae
(33)–(36) and (40)–(42) and the plot of the ESEC in pure
Xe with the same energy spectra of emitted electrons.
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5. Summary

We have investigated the influence of the electric field on
the effective secondary electron emission coefficient in a
high-density noble gas. This effect was first explained
qualitatively by J J Thomson and L B Loeb as a result
of joint action of the secondary emission of electrons from
the surface, back-reflection of these electrons by the gas
atoms and their extraction from the cathode vicinity by the
electric field. They assumed that all of these processes
were independent of the processes in the bulk of the
discharge.

Later, the present authors [7] showed analytically that
in most cases the whole concept of the ESEC (or the second
Townsend coefficient) as a property of the surface–gas
interaction, determined in the close vicinity of the surface
and independent of the discharge in the bulk, should be
reconsidered. For example, in some cases the processes in
the cathode vicinity and in the bulk of the gas discharge are
so tightly interwoven that the ESEC is determined by the
discharge in the whole gap. Since electron dynamics plays
such an important role in establishing the ESEC, one should
expect that its value will be different in the stationary and
non-stationary cases.

In this paper we have shown that if the voltage applied
to a gap is significantly higher than the excitation/ionization
potential of the gas atoms, then the size of the region in
which processes affect ESEC is much smaller than the gap
length (but much larger than electron mean free path).

In order to obtain some quantitative results, we limited
our consideration to the case of a high-density noble gas
and stationary, uniform and weak electric field (eEλe �
W0). The general case of arbitrary field strength requires
numerical consideration. A specifics of noble gases, which
was essential to our consideration, is that the width of the
energy spectrum (maximum energy) of secondary electrons
emitted from the surface is less than the excitation threshold
of the gas atoms. Then, when an electron experiences
inelastic collision its energy changes so much that it
immediately leaves the initial energy range and is not
able to return to the cathode surface. In contrast, in
many molecular gases the excitation threshold is determined
by the molecular rotational and vibrational terms and is
often much less than the width of the energy spectrum of
the secondary electrons, which is still determined by the
ionization potential of an atom or a molecule.

The expressions (27) and (31) for the differential and
total ESEC (and (32) or (34)), are applicable not only
for the case when the electron emission is caused by the
action of ions, but also for any other source (photons,
metastables, etc), which can be characteristized by the yield
δe (instead ofγi) and the spectrumGe(W0) (instead of
G(W0)) of the secondaries. Thenγ (E/p,Emax)/γi and
δ(E/p,Wmax)/δe are the same if the spectraG(W0) and
Ge(W0) are identical.

For comparison we plot in figure 5 experimental data
[4–6, 11] of the ESEC for the low-energy (below 1.5 eV)
photo-electrons emitted in argon and the result obtained
with (34). At very lowE/p our theory differs significantly
form the experimental data [4], probably because at such

Figure 5. ESEC in Ar. Comparison with experiment. The
dotted line is the plot of (43) with pλe = 1/37 and
Wmax = 1.5 eV, as well as with pλe1/49 and
Wmax ,eff = 0.8 eV.

low E/p one cannot neglect the energy losses in elastic
collisions. At higherE/p our theory is in good agreement
with the fit of experimental data of Felsch and Pech [5, 6],
which they suggested:

γFP (E/p)/γi = (1+ 0.0948/η′)−2/3 (43)

where η′ = K(e/Wmax)
2/3(pλe)

3/2(E/p), and K =
1 V −1/3 (Torr cm)−1/2. However, in order to use in this
expression themaximum energy of photoelectronsthey used
a value of the parameterpλe higher than we do: 1/37
for Ar instead of 1/49 (pλtr (Wex) = Wex/X̃ = 1/49).
We believe that this can be explained by the peculiarities
of the energy spectrum of the photoelectrons, which has
a relatively long tail, which does not contribute to the
ESEC, so thateffective maximum energyis closer to the
average energy of the photoelectrons rather than to their
maximum energy. Comparison with data of Molnar [11]
supports the same conclusions: our formula gives good
agreement with experiment if we use the average energy
of the photoelectrons instead of their maximum energy for
the value of theWmax in our model spectrumof secondary
electrons (see figure 5). As we noted at the end of section 3,
at highE/p (such thateEλtr > Wmax) our theory is not
valid, but, as one can see from figure 5, the error it gives
does not exceed 10%.

As we mentioned in introduction we assumed that the
electric field changes slowly enough and its gradient is
small. Using the found solution we can formulate these
conditions quantitatively. As one can see from the solution
for the functionF(z) (see (A1)), the size of the region
which determines the ESEC can be estimated as

`γ ∼ zI.max + κ−1 ≈ Wex

eE
+
(

v2
ex

3νmtν ′il(Wex)eE

)1/3

.
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It takes a time of about

τγ ∼ `γ /vd

for an electron to drift across this region. One may consider
that the electric field changes slowly in time and space if

τγ |∂E/∂t | � E `γ |∇E| � E.
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Appendix

Let us denote κ = [(3νtrν ′il/v
2
ex)eE(zI )]

1/3, then
equation (22) forz ≥ zI takes the form

∂2

∂ξ2
F = κ3ξF (A1)

where ξ = z − zI . This is an Airy equation, and its
solution, which has an asymptote that goes to zero (F ∝
(κξ)−1/4 exp[−(2/3)(κξ)3/2]) is

F(z ≥ zI ) = a Ai(κξ) ≡ a

π

√
κξ/3K1/3(

2
3(κξ)

3/2) (A2)

where Ai(x) is the Airy function andK1/3 is the modified
Bessel function of the order 1/3.

In the regionz ≤ zI (or ξ < 0) using (23) we obtain
for F(z)

F (z ≤ zI ) = F(zI )
(

1+ C
∫ zI

z

νtr

v3
dz

)
. (A3)

At the point z = zI both function F(z) and its first
derivative must be continuous functions ofz. Applying this
conditions to (A2) and (A3) we obtain unknown constants
a andC:

a = F(zI )/Ai(0) ≈ 2.8F(zI ) (A4)

C = Ai ′(0)
Ai(0)

κv3
ex

νtr (vex)
= 0.73

κv3
ex

νtr (vex)
(A5)

where Ai(0) and Ai′(0) are the values of the Airy function
and its derivative at the zeroth argument. Using (13) and

the condition that the electron current is constant between
the cathode (z = 0) and the pointz = zI , we obtain

je(z ≤ zI ) = 2πe

3

v3

νtr

∂F

∂z
= −2πe

3
CF(zI )

nc = 2πvF(zI )

(
1+ C

∫ zI

0

νtr

v3
dz

)
. (A6)

Substituting these expressions into the boundary condition
(18) and using the first of equations (13) we can write

je = −2πe

3
CF(zI ) = G(W0)γiji

+2πe
v2

0

4
F(zI )

(
1+ C

∫ zI

0

νtr

v3
dz

)
. (A7)

Solving the last of this series of equations with respect to
F(zI ) we find je:

je = jiG(W0)γi

(
1+ 3

4

v2
0

C
+ 3

4
v2

0

∫ zI

0

νtr

v3
dz

)−1

. (A8)

Comparing this equation with the definition ofγ , γ = je/ji ,
we find the expression forγ (W0, E/p):

γ (W0, E/p) = G(W0)γi

(
1+ 3

4

v2
0

C
+ 3

4
v2

0

∫ zI

0

νtr

v3
dz

)−1

= G(W0)γi

[
1+ 3

4

v2
0

v2
ex

(
σtr

σ ′ileEλtr

)1/3

+3

4
v2

0

∫ zI

0

νtr

v3
dz

]−1

. (A9)
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